
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OPTIMAL GUIDANCE OF A RELAY MAV FOR ISR 

SUPPORT BEYOND LINE-OF-SIGHT 

THESIS 

John H. Hansen, Second Lieutenant, USAF 
AFIT/GAE/ENG/08-01 

 
 
 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
Wright-Patterson Air Force Base, Ohio 

 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government. 



AFIT/GAE/ENG/08-01 
 

 

OPTIMAL GUIDANCE OF A RELAY MAV FOR ISR 

SUPPORT BEYOND LINE-OF-SIGHT 

 

THESIS 

 

Presented to the Faculty 

Department of Electrical and Computer Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Aeronautical Engineering  

 

John H. Hansen, BS 

Second Lieutenant, USAF 

 

March 2008 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



AFIT/GAE/ENG/08-01 
 

 

OPTIMAL GUIDANCE OF A RELAY MAV FOR ISR 

SUPPORT BEYOND LINE-OF-SIGHT 

 

John H. Hansen, BS 

Second Lieutenant, USAF 

 
 
 
 
 
 
 
 
Approved: 
 
 
 
 __________________________________ __________ 
 Dr. Meir Pachter (Chairman) Date 
 
 
 
 __________________________________ __________ 
 Maj. Paul Blue (Member) Date 
 
 
 
 __________________________________ __________ 
 Dr. David Jacques (Member) Date 
 



AFIT/GAE/ENG/08-01 
 
 

Abstract 

This thesis developed guidance laws to optimally position a relay Micro-UAV 

(MAV) to provide an operator with real-time Intelligence, Surveillance, and 

Reconnaissance (ISR) by relaying communication and video signals when there is no 

line-of-sight between the operator at the base and the rover MAV performing the ISR 

mission. 

The ISR system consists of two MAVs, the Relay and the Rover, and a Base. The 

Relay strives to position itself to minimize the radio frequency (RF) power required for 

maintaining communications between the Rover and the Base, while the Rover performs 

the ISR mission, which may maximize the required RF power. The optimal control of the 

Relay MAV then entails the solution of a differential game. Applying Pontryagin’s 

Maximum Principle yields a nonlinear Two-Point Boundary Value Problem (TPBVP). 

Suboptimal solutions are also analyzed to aid in solving the TPBVP which yields 

the solution of the differential game. One suboptimal approach is based upon the 

geometry of the ISR system. Another suboptimal approach envisions a stationary Rover 

and solves for the optimal path for the Relay. Both suboptimal approaches showed that 

the optimal path for the Relay is to head straight toward the midpoint between the Rover 

and the Base. 
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OPTIMAL GUIDANCE OF A RELAY MAV FOR ISR 

SUPPORT BEYOND LINE-OF-SIGHT 

1 Introduction 

1.1 Operational Background 
Lessons learned from OPERATION ENDURING FREEDOM and OPERATION 

IRAQI FREEDOM have demonstrated a need for teams on the ground in urban 

environments to organically engage high value, time-sensitive targets in real-time, from 

Near Line-of-Sight (NLOS) ranges (500 m to 5 km) without waiting for outside air 

support. Currently, engaging these NLOS targets requires coordination of orbiting assets 

such as fighter or bomber aircraft, Hellfire missile equipped Predator Unmanned Aerial 

Vehicles (UAVs), or joint ground-based artillery systems. While devastatingly effective, 

these systems have three drawbacks: (1) they must be on-station and available for tasking 

at the time of the request, (2) they have a high probability of causing significant collateral 

damage, and (3) it takes time to pass the target information and receive clearance to 

engage the target—an unacceptable delay when engaging a fleeting, high value target. 

These drawbacks have led to research in the areas of man-portable Micro Aerial 

Vehicles (MAVs) which can be deployed by members on location, requiring minimal 

deployment time and minimal outside coordination. The thesis described herein is 

therefore the progeny of the Air Force Institute of Technology’s (AFIT’s) response to the 

need of such a system. This thesis is the culmination of the theoretical work of several 

other groups, the implementation of some previous ideas as well as design and integration 

of new methodologies determined as best suited for completion of the task of creating a 

miniature, mobile system which can track and engage a moving target. 
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1.2 Problem Statement 
Current man-portable weapon systems require the operator to have unobstructed 

Line of Sight (LOS) to the target at effective ranges less than 1000 meters. Maintaining 

an unobstructed LOS in an urban environment, while staying behind protective cover, is 

challenging at best. These current weapon systems also require the operator to partially 

expose themselves, both giving away their location and exposing them to enemy fire. In 

addition, these weapons are essentially large, explosive bullets with no loiter or wait 

capability. With the current capability, a team tasked with engaging a time sensitive 

target in a small city would have to infiltrate the city undetected to within approximately 

200 meters of the target. Assuming the ground team stayed covert while moving to 

intercept the target, detection is almost assured once the current weapon systems are used 

to engage the target. Given their distance from friendly forces, the survivability of the 

engaging team at this point would be very low. Further, if the target moves, or the ground 

force team is re-directed, their response time is comparably higher than other systems due 

to the team’s need to stay covert while navigating through an urban environment. 

The desired organic capability is a responsive, man-portable, self-propelled, low 

signature, expendable delivery system with loiter capability, and a NLOS range greater 

than that currently provided by fielded systems. This new system would allow the user to 

covertly launch, loiter, track, positively identify, and engage a time-sensitive, high value 

target from a safe distance. The system should be effective in urban environments as well 

as desert, maritime, and temperate environments. 

1.3 Thesis Purpose  
This thesis concentrates on providing reliable communications throughout all 

phases of the Intelligence, Surveillance, and Reconnaissance (ISR) and engagement 
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mission by introducing an additional MAV which will act as a relay between the ground 

team and the envisioned delivery system. The presence of this relay MAV should not 

increase the operator workload and should therefore fly autonomously to maintain the 

communication link. The thesis focuses on developing the guidance laws which will 

dictate the behavior of the relay MAV. 

1.4 Thesis Outline 
With an established thesis purpose, the remainder of the thesis will now focus on 

describing the methodology for specifying and validating the developed system. The 

Background chapter provides the problem background, motivation, and an overview of 

related research work in the fields of communication relays and dynamic games. The 

Theoretical Analysis chapter defines the full dynamic system and several lower-order 

systems. The Demonstration Hardware and Testing chapter describes the hardware 

components and flight tests associated with proving the theoretical concept of 

communication relay. The Results and Analysis chapter verifies that the developed 

system meets specified requirements and validates the system using simulation and test 

results. Finally, the Conclusions and Recommendations chapter discusses lessons learned 

and recommends areas for future research. 
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2 Background 

2.1 Motivation 
Reliable communication is essential in order to perform the ISR and engage 

mission. The envisioned man-portable system will not be supported by satellite 

communications, but will use radio frequency (RF) modems. High frequency radio 

communications are limited by an adequate Line-Of-Sight (LOS) between the operator at 

the Base and the MAV. The MAV systems considered in this thesis are utilized to seek 

out and engage high value targets and will be referred to as Rovers. 

There are a number of environments (e.g., urban, forest, mountainous) in which 

the Base may often lose communication with deployed Rovers because it is not possible 

to maintain LOS with the Rovers. This thesis focuses on developing guidance laws to 

optimally position a specialized Relay MAV to provide the operator at the Base with real-

time information by relaying communication and sensor data when there is no LOS 

between the operator and the Rover. 

2.2 Related Research 
Recent studies have produced two general designs for a reliable and robust 

communication network utilizing mobile communication nodes. The first design consists 

of one or more mobile communication nodes which form a single chain to relay 

information between the source and the destination. This is referred to as a “single-flow 

network.” Many designs for single-flow networks use a fixed source and fixed 

destination, though they do not discount the possibility of a mobile destination (Dixon 

and Frew, 2007; Goldenberg et al., 2004). The second design consists of multiple mobile 

communication nodes which form a “mesh-like network”. This configuration adds fault-
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tolerance for a more robust network (Basu and Redi, 2004; Floreano et al., 2007). 

However, a “mesh-like network” would be ill suited for the envisioned ISR and 

engagement system due to desired unit covertness while engaging a high value target. In 

this respect, Brown et al. have developed the Ad-hoc UAV Ground Network (AUGNet) 

test bed, showing the practicality of UAV-based mobile communication nodes using 

IEEE 802.11b wireless routers (Brown et al., 2004). The proposed ISR and engagement 

system may have a network design similar to AUGNet but the Relay must still have an 

optimal mobility control law in order optimize network communications. 

Dixon and Frew have utilized the AUGNet system with an extremum seeking 

controller to study cooperative electronic chaining while maximizing the signal-to-noise 

ratio between the nodes of the multi-hop network (Dixon and Frew, 2007). Goldenberg et 

al. have shown that communication nodes should be evenly spaced on the line between 

the source and destination in order to minimize the energy cost of communicating 

between the two (Goldenberg et al., 2004). 

2.3 Research Statement 
The main distinction of this work is that no cooperation between the Rover and 

the Relay is imposed while optimally positioning the communication node (the Relay). 

This scenario is then modeled by posing a differential game: The Relay strives to position 

itself such that the RF power required for maintaining communications is minimized, 

whereas the Rover strives to position itself such that the RF power is maximized. 

Suboptimal Relay and Rover strategies are provided. These will serve as a first guess in 

solving the Two-Point Boundary Value Problem (TPBVP) given by the Pontryagin 

Maximum Principle and which yields the optimal strategies. 
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3 Theoretical Analysis 

3.1 System Definition 
It is assumed that the rElay (E) MAV is cognizant of the rOver’s (O) 

instantaneous position relative to the Base (B) as well as its own position. As far as the 

RF power requirements are concerned, this is determined by their distance from the Base 

and the Rover-Relay separation. Thus, the state is the distance rE of the Relay from the 

Base, the distance rO of the Rover to the Base, and the angle θ included between the 

radials from the Base to the Relay and the Rover. This angle is measured clockwise (see 

Figure 1). The MAVs have simple motion. The control for each MAV is its relative 

heading angle measured clock-wise from its radial from the Base. Figure 1 provides a 

visualization of the kinematics. The differential equations of motion are 

 
0
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1 1
0

cos                       ,  (0)               

cos                       ,  (0)               

sin sin  ,  (0) ,  0
O E

E E E E
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 (1) 

T is the planning horizon utilized by the control algorithm. The cost functional is 

indicative of the RF power required and is the time averaged sum of the squares of the 

distance between the Relay and the Rover and between the Relay and the Base: 

( )2 2

0
( ) ( )

T
EO t BE t dt= +∫y  

 6



 
Figure 1: Schematic of Relay System 

The points E, B and O in  represent the positions of the Relay, Base and 

Rover, respectively. These three points form a triangle which can be utilized to calculate 

the distance 

2

EO  by the law of cosines. 

2 2 2( ) 2 cosE O E OEO t r r r r θ= + −  

Hence the cost functional is 

 ( )2 2

0
2 2 cos

T

E O E Or r r r dθ= + −∫y t  (2) 

The relay’s objective is to minimize the average RF power required for 

maintaining communications. The control available to accomplish this task is limited to 

setting the course angle ϕ of the Relay, while the Rover does whatever it wants, namely, 

it performs the ISR mission: in a worst case scenario, one might assume that the Rover is 

working to maximize the cost functional. The optimization problem is then a differential 

game where the Relay’s control is its relative heading ϕ and the Rover’s control is its 

relative heading ψ. 

The system is analyzed by first non-dimensionalizing the states and the 

parameters. The velocities are scaled by the velocity of the Relay (VE), yielding a non-
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dimensional speed ratio α  ( O

E

V
Vα = ). The distances are scaled by the initial distance of the 

Rover from the Base so that each distance throughout the time history of this ISR mission 

is measured in units of . Using these non-dimensional parameters, the differential 

game in  now becomes 

0Or

2 ×R S1
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where the problem parameter is the speed ratio 0α ≥ . To solve the differential game, the 

Hamiltonian is introduced in Equation (4) 

 ( )2 2 1 12 2 cos cos cos sin sin
E O O EE O E O r r r rr r r r θθ λ ϕ λ α ψ λ α ψ ϕ= − − + + + + −H  (4) 

where ,   and 
E Or r θλ λ λ  are the system co-states. 

According to the Pontryagin Maximum Principle (Pontryagin et al., 1962), the 

differential equations for the co-states are 
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and the optimality condition is given by , namely max min
ψϕ

H
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The second-order sufficiency condition for ϕ is 

2

2

sincos 0     
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Er
θλ ϕλ ϕ
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and inserting the expression for ϕ* from (6) yields 
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Similarly, 
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and inserting the expression for ψ* from (7) yields 
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The expressions for ϕ* and ψ* given in Equations (6) and (7) can also be used to 

rewrite the state and co-state equations only in terms of the states and co-states. A 

standard, albeit nonlinear, Two-Point Boundary Value Problem (TPBVP) is obtained on 

the interval t = [0, T]: 
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3.2 Suboptimal Approaches 
Suboptimal solutions are useful in their own right and provide insight into the 

differential game. Suboptimal solutions can also be used to provide the first guess for 

solving the TPBVP (10) of the optimal control/differential game. 

3.2.1 Geometric Approach 
Using a geometric approach provides a suboptimal but easily implementable 

solution of the differential game. This approach is suboptimal because the Relay and the 

Rover each momentarily assume that the other player is stationary when determining 

their optimal control. 

 
Figure 2: Schematic of Relay System Showing the Midpoint 
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The geometry of the engagement forms a triangle with vertices E, B and O 

representing the respective locations of the Relay, Base and Rover (see Figure 2). Let M 

be the midpoint between the Rover and the Base. Simply rotating the schematic in Figure 

2 provides an equivalent schematic (see Figure 3) which is similar to the one analyzed in 

Appendix A. 

M 

E 

O B 

Isocost Circle y 
 

Figure 3: Schematic of Relay System Showing Isocost Circle 

If the Rover were stationary, the loci of constant instantaneous costs 

2 2
EO BE= +y  

for the Relay are concentric circles centered at the midpoint and the midpoint is the Relay 

location which minimizes the cost (Gutenmacher and Vasilyev, 2004). The Relay is on 

the circumference of said circles, and the instantaneous cost y is determined by the 

position of the Relay. This means that the gradient vector for minimizing cost is in the 

radial direction. Therefore, the optimal strategy of the Relay is to head toward the 

midpoint M. 

The optimal control of the Relay is determined using the triangle ΔBEM. The 

distance between E and M is determined using the law of cosines (just as in determining 

the distance between E and O before). The control angle ϕ is then found indirectly by 

finding its supplementary angle using the law of sines. However, due to an inherent 
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ambiguity in the law of sines, the control law is specified for three cases: (1) ϕ is acute, 

(2) ϕ is 90o and (3) ϕ is obtuse. 
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This ambiguity can be bypassed by using an inverse cosine function in place of 

the inverse sine. Thus, the Relay’s strategy is: 

 1

2 2

cos 2* cos
4 4 cos

O E

E O E O

r r
r r r r

θϕ
θ

−
⎛ ⎞−⎜=
⎜ + −⎝ ⎠

⎟
⎟

 (12) 

As far as the Rover is concerned for a worst-case scenario: The Rover is striving 

to maximize the cost y at each time instant, assuming that the Relay is stationary. This is 

accomplished by expanding the isocost circle. The most effective way to expand the 

isocost circle is to increase the radius EM  of the circle. When the Relay is stationary, the 

Rover exclusively controls the position of the midpoint M. The velocity of the midpoint 

M is always ½VO, where VO is the velocity of the Rover, and is always aligned parallel to 

the velocity vector of the Rover because M is determined by O, and their motion forms 

two similar triangles (see Figure 4). 

VO 

O’ 

B 
M O 

M’ 
 

Figure 4: Motion of M and O Forms Similar Triangles 
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The Rover would like to head in such a direction as to cause the midpoint M to 

move such that the radius of the isocost circle increases as fast as possible. Hence, to 

achieve this result, the Rover, which controls the direction of the velocity vector VO, 

aligns this vector with the line EM , that is, it heads along a path parallel to the Relay. 

Thus, the Rover’s strategy is: 

 * *ψ ϕ θ= −  (13) 

Note that these Relay and Rover strategies are independent of the planning 

horizon T. 

3.2.2 One-Sided Optimization 
The complexity of the dynamic optimization problem is significantly reduced by 

holding one of the MAVs at a fixed position: We will optimize the control of the Relay 

when the Rover is stationary, that is, rO ≡ 1. The dynamics are the same as previously 

developed, but now the parameter α = 0 and the state space is reduced to . The 

optimal control problem is considered: 

1 ×R S1

 

( )

0

2

0

1
0

min 2 1 2 cos

. .  
cos       ,  (0)

sin  ,  (0) ,  0
E

T

E E

E E E

r

r r dt

s t
r r r

t T

ϕ
θ

ϕ

θ ϕ θ θ

= + −

= =

= − =

=

≤ ≤

∫y ⎫
⎪
⎪
⎬
⎪
⎪⎭

 (14) 

The new Hamiltonian is 

 2 12 1 2 cos cos sin
E EE E r rr r θθ λ ϕ λ= − − + + −H ϕ  (15) 

According to the Pontryagin Maximum Principle (Pontryagin et al., 1962), the 

differential equations for the co-states are 
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 2

sin4 2cos   ,  ( ) 0

2 sin                           ,  ( ) 0

E Er E r
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r

r T
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λ θ λ

= − − =
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⎪
⎬
⎪
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 (16) 

and the optimality condition is given by , namely max
ϕ

H

 

cossin 0
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E

E

r
E

r E

r

r

θ

θ

λ ϕλ ϕ
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λϕ
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∂

⇒ = −

H
=

 (17) 

The second-order sufficiency condition is: 

 
2

2

sincos 0
Er

Er
θλ ϕλ ϕ

ϕ
∂

∴ = − + <
∂

H  (18) 

The expression for ϕ given in Equation (17) is used to rewrite the state and co-

state equations only in terms of the states and co-states, obtaining the nonlinear TPBVP 
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⎪
⎪
⎪
⎪
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⎪
⎪
⎪
⎪⎭

 (19) 

=

This one-sided optimization problem is easier to solve than the min-max problem 

initially posed and can therefore be analyzed using typical optimization programs. 

GPOCS is a Matlab-based optimization program that uses the “Gauss pseudospectral 

method where orthogonal collocation is performed at the Legendre-Gauss points” 

(Tomlab Optimization Inc., 2008) to find the minimizing path of the Relay in this 

situation. 
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Appendix B also provides an analysis of the case where the Rover is stationary, 

but only finds the optimal location of the Relay, not the controls which will guide the 

Relay to that location (a static optimization approach). 

An additional one-sided optimization problem, not considered herein, is obtained 

when the Rover’s point of view is taken, namely, the Relay is stationary and the Rover 

works to maximize the cost functional. 

( )2 2

0
2 2 cos

T

E O E Or r r r dθ= + −∫y t  

3.2.3 Suboptimal Solution Applied to TPBVP 
If the geometric approach proves to be an accurate heuristic method, then the 

initial controls that coordinate with a given initial state can be found using the results 

from the geometric approach. These initial controls are used with Equations (6) and (7) to 

find a relationship between the initial co-states. This relationship reduces the number of 

unknown initial co-states to one, namely, λθ. 

Choosing an appropriate value for λθ will provide the two other initial co-state 

values needed to solve the nonlinear TPBVP given in Equation (10). Using the values as 

initial guesses, the optimal initial values of the co-states are found using an iterative 

method, referred to as a “shooting” method. The process for the shooting method is given 

below. 

1. At the iteration step k, the proposed initial co-states (λ(0) = λk(0)) are used with the 
known initial states (x(0) = xk(0)) to obtain a time history of the nonlinear differential 
system (10) on the interval 0 ≤ t ≤ T using ode45 in Matlab. This time history will be 
referred to as xk(t) and λk(t). The final value of the co-states in the history is λk(T). 

2. The differential system is then linearized about the trajectory xk(t), λk(t), 0 ≤ t ≤ T to 
obtain a time-dependent linear system in the perturbations δxk(t), δλk(t): 

 ( ) , (0) 0, (0) , 0k

x xd A t x t T
dt

δ δ
δ δλ δλ

δλ δλ
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

k ≤ ≤  (20) 
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The Ak matrix is found using the Jacobian function on the differential equations of the 
system with reference to the states and co-states. Then the values of the states and co-
states are substituted into the Ak matrix, resulting in a unique Ak matrix at each time 
step. 

3. Then, each of the states and co-states are give an initial unit perturbation which is 
then propagated using the linear differential system to find the resultant change in 
states and co-states at t = T. This collection of resultant changes is combined to form 
a resolvent Φ matrix which relates an initial perturbation to a resultant change in 
state. 

 
0( )

( )
( ) k

x T
T

T
δ

δλδλ
⎛ ⎞⎛ ⎞

= Φ ⎜⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎟  (21) 

The Φ matrix can actually be divided into four sub-matrices: 

1,1 1,2

2,1 2,2

Φ Φ⎡ ⎤
Φ = ⎢ ⎥Φ Φ⎣ ⎦

 

 2,2( ) ( ) kT Tδλ⇒ = Φ δλ  (22) 

4. The optimality problem (10) requires that all co-states have a final value equal to 
zero. Therefore, the goal is for any nonzero final co-states found in step 1 (λk(T)) to 
be countered by the resultant change in co-state found in step 3 (δλ(T)). 

2,2

0 ( ) ( )
( ) ( )

k

k k

T T
T T

λ δλ
λ δλ

= +
= + Φ

 

  (23) 1
2,2 ( ) ( )k T Tδλ λ−⇒ = −Φ k

k

Then, by adding the perturbation found in (23), the proposed co-states for the next 
iteration should result in a final co-state value of zero. 

1 :k kλ λ δλ+ = +  
  (24) 1

1 2,2 ( ) ( )k k kT Tλ λ λ−
+⇒ = − Φ

The steps in this shooting method are then repeated until the final co-states λk(T) 

converge to zero. It should also be noted that if the sub-matrix Φ2,2(1) is not invertible, 

then the generalized inverse of Φ2,2(1) should be used: 

†
2,2 ( ) ( )k kT Tδλ λ= −Φ  

Specifically, calculate the full rank factorization of Φ2,2(1). 

2,2

† 1
2,2

( )

( ) ( ) ( )T T T

T HK

T K KK H H H− −

Φ =

⇒ Φ = 1 T
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The shooting method yields initial co-states which do not equal zero at the end of 

the planning horizon, T. Therefore, the co-states are used as initial guesses for another 

shooting method program. This program uses ode45 to solve the system of equations (10) 

for the same time interval (0 ≤ t ≤ T) and iteratively guesses initial conditions for the co-

states, using lsqnonlin, to minimize the error of the terminal conditions of the co-states, 

namely, the co-states must equal zero at T. 

This final shooting method provides the initial co-states which most closely result 

in satisfaction of the terminal constraints. However, the performance of the program 

requires a very good initial guess. The first shooting method provides this initial guess. 

The flow chart shown in Figure 5 provides a visualization to assist in understanding how 

the results from the geometric approach are used by the aforementioned Matlab programs 

to attain full system results. The flow represented here is implemented by a single Matlab 

program: “geometry_applied_rdg.m”. 

 
Figure 5: Flow Chart of Matlab Programs Which Produce Full System Results 

lsqshoot.m 

costatefinder.m 

shooting_method.m 

Appropriate Initial 
Condition of λθ 

Results 
Shown 

Initial State 
Conditions 

Simulink Model 
(Geometric Approach) 

3.3 Planning Horizon 
The Rover uses the services of the Relay as long as OE OB< , for if OE OB> , 

communication with the Base through the Relay will be counterproductive. In the case 
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where OE OB= , the geometry of the engagement will form an isosceles triangle and the 

Rover will lie on the orthogonal bisector of BE  shown by the dashed line in Figure 6. 

 
Figure 6: Schematic of Initial Condition Border Line 

Therefore, in order to make proper use of the Relay, the state must satisfy the 

condition 

 ( )1 1
20 cos E

O

r
rθ −≤ <  (25) 

The optimal solution of the system will make sense for planning horizons T, 

provided that the state satisfies Equation (25) 0 .t T∀ ≤ ≤  The geometric considerations-

based suboptimal strategies in Figure 7 show that eventually, the orthogonal bisector of 

the segment BE  will be crossed by the Rover and hence there must be a maximum 

planning horizon, depending on the initial values for rE, rO and θ. Once the Rover reaches 

the bisector of the segment BE , the game is over. 

 

E 

O 
B 

θ 
M

VE 
VO 

θ 

B 

E 

O 
Orthogonal 
bisector of BE 

Feasible 
Domain 

Figure 7: Initial Condition with Limited Planning Horizon 
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However, if the initial state is as shown in Figure 8, then the maximum possible 

planning horizon may theoretically approach infinity. That is, condition (25) will not 

limit the maximum planning horizon; in practice, the planning horizon may still be 

limited by other factors. For this to be the case, the state must satisfy the condition 

 ( )1cos 2 E

O

r
rθ −<  (26) 

 
Figure 8: Initial Condition with Unlimited Planning Horizon 

Therefore, the maximum possible planning horizon is unbounded by the relation 

between  and OE OB  when 

B 

E 

O M

VE VO 

θ 

( )10 cos 2 E

O

r
rθ −< <  

and is bounded when 

( ) ( )1 1 1
2cos 2 cosE E

O O

r r
r rθ− −< <  

The maximum planning horizon may also be bounded by the nature of the cost 

functional: The instantaneous cost 

2 2
EO BE= +y  

will only depend on BE  when using the suboptimal geometric considerations-based 

strategies for the Relay and Rover because EO  will remain constant for α = 1 and does 

not depend on T. The planning horizon used will allow BE  to decrease as the Relay 

moves along the line EM  until BE EM⊥  at the point Ec, as shown in Figure 9. Once 

this point is reached, lengthening the planning horizon provides no benefit for the Relay. 

 19



 
Figure 9: Schematic of Relay Location Closest to Base 

This strongly indicates that a conjugate time (Tc) might exist, which would induce 

an upper bound on the planning horizon. As a first approximation, 

M O

E 

B 
Ec 

 c
c

E

EET
V

=  (27) 

The distance cEE  is found by first considering the area of the triangle ΔBEM. 

 1
4 sinO ES r r θ=  (28) 

At the same time, 

 
1
2

2 21 1
2 4 cos

c

E O E O

S BE EM

r r r r BEθ

= ⋅

= + − ⋅ c

 (29) 

Combining Equations (28) and (29) yields 
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θ

θ
=

+ −
 (30) 

Finally, cEE  is found using the Pythagoras Theorem: 

1
2
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2 2 2
2

2 2
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4 4 cos

c E c

E O
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E O E O

EE r BE

r rr
r r r r

θ
θ

= −
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22 2

2 2

4 4 cos cos
4 4 cos

E E O O
c E

E E O O

r r r rEE r
r r r r

2θ θ
θ

⇒

⎡ ⎤− +
= ⎢ ⎥− +⎣ ⎦

 (31) 

Therefore, the approximate conjugate time is found by inserting Equation (31) 

into Equation (27) 
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r r r rrT
V r r r r
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2

θ θ
θ

⎡ ⎤− +
= ⎢ ⎥− +⎣ ⎦

 (32) 

and will require T < Tc. 
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4 Demonstration Hardware and Testing 

4.1 Demonstration Configuration 
The hardware for the demonstration was provided by the AFIT Advanced 

Navigation Technology (ANT) Center’s laboratory. The hardware presented here will not 

be used for final production of the ISR and engagement system. It only serves to test and 

demonstrate the discussed concepts. 

4.1.1 Unmanned Aircraft 
One of the standard aircraft flown by the ANT Lab is the SIG Manufacturing 

Company Rascal 110. This aircraft has very stable flight characteristics and a large 

payload capacity. It has a braced high-wing configuration with a wingspan of 110 inches 

and a tail wheel. The initial flight testing of the Rascal for the ANT Lab was performed 

by Jodeh in 2006. The resulting performance, stability and static data were also presented 

by Jodeh (Jodeh, 2006). 

 
Figure 10: Sig Rascal 110 (©2008 Tower Hobbies) 

4.1.2 Autopilot 
The autopilot chosen for this demonstration is the Kestrel Autopilot System v 2.2 

produced by Procerus Technologies. The autopilot is very compact and weighs only 16.7 

grams, making it “the smallest and lightest full featured autopilot on the market” 

(Procerus, 2008). This autopilot was chosen because it will be able to fit in any aircraft 
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chosen for the final ISR and engagement system. It was also chosen because Procerus 

Technologies also offers high quality compatible software (OnPoint Targeting) for video 

analysis and target recognition. The autopilot is controlled through the included Virtual 

Cockpit program. This program easily accepts latitude and longitude coordinates to set 

waypoints for direct flight. 

 
Figure 11: Kestrel Autopilot System (©2008 Procerus Technologies) 

4.1.3 Communications Transmission 
The standard radio frequency modem used by Procerus for the Kestrel autopilot is 

the Xtend OEF RF module available from Digi International (formerly MaxStream). 

These modems operate in the 900 MHz frequency band and have an output power of one 

watt. The outdoor line-of-sight range is up to 40 miles (with a high gain antenna) and it 

supports a repeater network topology (Digi Int., 2008). 
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Figure 12: Xtend OEF RF Module (©2007 Digi International) 

4.1.4 Sensor Data Transmission 
The system used to transmit and receive data from the on-board camera is a 

product of Black Widow AV. This set transmits on one of eight channels in the 2.4 GHz 

frequency band with an output power of one watt. Each unit in the set can operates on a 

12 V battery pack while the receiver also comes with an AC adapter (Black Widow AV, 

2008). 

 
Figure 13: Black Widow 1 W Transmitter and Receiver Set (©2007 Black Widow AV) 

4.1.5 Relay Configuration 
The relay for the sensor data was the only relay available for the proof of concept 

demonstration. The hardware and software required to test a relay for autopilot and 

control signals was unavailable. The relay consisted of a Black Widow transmitter and 
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receiver set, where the output of the receiver was directly fed into the input for the 

transmitter (by the long blue cord seen in Figure 14, below). 

 
Figure 14: Setup for Sensor Data Relay Demonstration 

In this configuration, the transmitter (seen on the left side of Figure 15) 

rebroadcast the data from the receiver (seen on the right side of Figure 15) on a different 

channel. The receiver and transmitter were also separated so as to avoid any interference 

between them. 

 
Figure 15: Detail of Setup for Sensor Data Relay Demonstration 

4.1.6 Implementation of Relay MAV Guidance 
The theoretical analysis showed that the loci of constant instantaneous costs 

2 2
EO BE= +y  

for the Relay are concentric circles centered at the midpoint of the straight line 

connecting the Base to the Rover and that this midpoint is the Relay location which 

minimizes the cost (Gutenmacher and Vasilyev, 2004). Furthermore, the gradient vector 
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for minimizing the cost is in the radial direction. Therefore, the simplest and most 

effective way to minimize the instantaneous cost is for the Relay to fly straight to the 

midpoint. 

In the envisioned ISR and engagement system, the controls for both the Rover and 

the Relay will come from the same ground control unit (GCU). The GCU will also 

process and record the sensor data from the Rover. In order to reduce the computational 

demand on the GCU, the implementation of the optimal Relay guidance will only consist 

of a program which calculates the position of lowest cost at a particular time and then 

provides this position to the Virtual Cockpit program as a loitering waypoint. This 

program is called “commrelay.m” (see Appendix C) and is systematically run every few 

seconds or every time the signal strength drops below a specified threshold. This method 

does not truly implement the optimal guidance laws derived in the theoretical analysis, 

but it does guide the Relay to fly straight to the optimal location at a particular time 

without inhibiting the performance of the rest of the system. 

4.2 Testing Procedure 
The relay was set up on a six-foot long folding table on top of a berm near the 

runway. Both the aircraft transmitter and the relay receiver were set to channel one. The 

relay receiver then output the signal to the relay transmitter, which was set to channel 

four. The operator at the ground station verified that both channels showed the same data 

by switching between channel one and channel four. For this test, the receiver and 

transmitter of the relay were six feet apart, which is one foot shorter than the overall 

length of the SIG Rascal 110. The test was repeated with the receiver and transmitter of 

the relay only four feet apart to show a feasible range for smaller aircraft. 
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5 Results and Analysis 

5.1 Numerical Results 
The numerical results shown below were all found using Matlab. 

5.1.1 Suboptimal Geometric Results 
The following numerical results illustrate the evolution of the differential game in 

the case where 
0 0 60.25,  1,  0.5,  and .ET r πα θ= = = =  In the game plane, the Rover 

always starts from (x, y) = (1, 0). The trajectories show a visualization of the state history, 

where the Base location is designated by a star at the origin and the final location of each 

MAV is signified by a triangle. The final midpoint location is designated by a square. 
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Figure 16: Geometric Time History for 

0 0 60.25,  1,  0.5,  and ET r πα θ= = = =  
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Figure 17: Geometric Spatial Results for 

0 0 60.25,  1,  0.5,  and ET r πα θ= = = =  

The following numerical results illustrate the evolution of the differential game in 

the case where 
0 0 30.48,  1,  0.5,  and .ET r πα θ= = = =  

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5
Reduced State Space: State History

Time

S
ta

te
s

 

 
rE
rO
θ

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5
Control History

Time

C
on

tro
ls

 (r
ad

)

 

 
φ
ψ

 
Figure 18: Geometric Time History for 

0 0 30.48,  1,  0.5,  and ET r πα θ= = = =  
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Figure 19: Geometric Spatial Results for 

0 0 30.48,  1,  0.5,  and ET r πα θ= = = =  

The results from the scenarios above show that the system performed exactly as 

designed. 

If T is sufficiently large, the three points E, B and O might become collinear. 

Once the three points are collinear (θ = 0) the motion is confined to a straight line. The 

Relay moves toward the midpoint M and the Rover moves away from the Relay. If α < 2 

the Relay will need to slow down once it reaches the midpoint. 

The following numerical results illustrate the evolution of the differential game in 

the case where 
0 0 60.5,  2,  0.5,  and .ET r πα θ= = = =  
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Figure 20: Geometric Time History for 

0 0 60.5,  2,  0.5,  and ET r πα θ= = = =  
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Figure 21: Geometric Spatial Results for 

0 0 60.5,  2,  0.5,  and ET r πα θ= = = =  

Once E, B and O are collinear, the reduced Relay velocity eliminates the need for 

excessive control use. However, it is possible that the Relay might never arrive at the 
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midpoint due to a short planning horizon T, or the maximizing efforts of the Rover. If the 

Rover used a suboptimal control strategy (which is common in practice), it is possible for 

the Relay to arrive at the midpoint and consistently match the motion of the midpoint. 

5.1.2 One-Sided Optimization Results 
The following numerical results show the solution of the optimization problem for 

0 0 60.25,  0.5,  and .ET r πθ= = =  The co-state initial conditions satisfying the terminal 

constraints are (0) 0.0347 and (0) 0.0647.
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Figure 22: One-Sided Time History for 

0 0 60.25,  0.5,  and ET r πθ= = =  
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Figure 23: One-Sided Spatial Results for 

0 0 60.25,  0.5,  and ET r πθ= = =  

It is important to note that the slope of the path traveled by the Relay maintains a 

constant value of 105o (measured counter-clockwise from the x-axis). The slope time 

history of the path has a numerical standard deviation of 0.0153o. This shows that the 

Relay travels along the straight-line path toward the midpoint M. This corroborates nicely 

with the heuristic solution found using the geometric approach. 

The following numerical results show the solution of the optimization problem for 

0 0 30.48,  0.5,  and .ET r πθ= = =  The co-state initial conditions satisfying the terminal 

constraints are (0) 0.25 and (0) 0.2165.
Er θλ λ= =  
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Figure 24: One-Sided Time History for 

0 0 30.48,  0.5,  and ET r πθ= = =  
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Figure 25: One-Sided Spatial Results for 

0 0 30.48,  0.5,  and ET r πθ= = =  
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Similar to the first case, the slope of the path traveled by the Relay maintains a 

constant value of 120o (measured counter-clockwise from the x-axis). The slope time 

history of the path has a numerical standard deviation of 0.0193o. This shows that the 

optimal solution is indeed a straight line path toward the midpoint between the Base and 

the Rover. 

5.1.3 Results Using Complete System 
The suboptimal solutions provide corroborating results, showing that the optimal 

control of the Relay is to fly directly toward the midpoint between the Rover and the 

Base. The optimal control for the Rover to reverse this action would be to fly parallel to 

the Relay, as suggested in the suboptimal geometric consideration. Therefore, the 

nonlinear TPBVP given by Equation (10) is solved using the two shooting methods 

described previously. These shooting methods find the initial co-states by using the data 

obtained from the geometric approach with Equations (6) and (7), and an appropriate 

value for λθ. To provide an easier comparison, the game plane results of the geometric 

approach are repeated with the results found using the shooting methods in the figures 

below. 

The following numerical results show the solution of the differential game where 

0 0 60.25,  1,  0.5 and .ET r πα θ= = = =  The initial co-states which most closely satisfy the 

terminal constraints are (0) 0.0185,  (0) 0.3126 and (0) 0.0838.
E Or r θλ λ λ= − = − = −

( ) 0.0,  ( ) 0.0018 and ( ) 0.0001.
E Or rT T Tθ

 The 

resulting terminal co-states are λ λ λ= = = −  
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Figure 26: Full System Time History for 

0 0 60.25,  1,  0.5 and ET r πα θ= = = =  
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Figure 27: Comparative Spatial Results for 

0 0 60.25,  1,  0.5 and ET r πα θ= = = =  

These results differ from the geometric approach, but the geometric approach is 

suboptimal. This may be the closest result to an optimal solution to the differential game 

for the given initial condition, since the second-order sufficiency conditions (given by 

equations (8) and (9)) are satisfied and the terminal co-states are very near zero. It 

appears that the Relay is still heading toward M, but the Rover’s strategy has changed 

considerably. 

The results in Figures 28 and 29 show the solution of the differential game where 

0 0 30.48,  1,  0.5 and .ET r πα θ= = = =  The initial co-states which most closely satisfy the 

terminal constraints are (0) 0.4112,  (0) 0.9082 and (0) 0.3875.
E Or r θλ λ λ= − = − = −

( ) 0.0,  ( ) 0.1007 and ( )
E Or rT T Tθ

 The 

resulting terminal co-states are 0.1018.λ λ λ= − = − = −  
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These results also differ from the geometric approach. It appears that the Relay is 

no longer heading toward M, but the terminal co-states also have a greater error from the 

constraints. The second-order sufficiency conditions (given by equations (8) and (9)) are 

still satisfied. 

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5
Reduced State Space: State History

Time

S
ta

te
s

 

 
rE
rO

θ

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5
Control History

Time

C
on

tro
ls

 (r
ad

)

 

 
φ
ψ

0 0.1 0.2 0.3 0.4 0.5
-1

-0.5

0

0.5
Co-state History

Time

C
o-

st
at

es

 

 
λr

E

λr
O

λθ

 
Figure 28: Full System Time History for 

0 0 30.48,  1,  0.5 and ET r πα θ= = = =  
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Figure 29: Comparative Spatial Results for 

0 0 30.48,  1,  0.5 and ET r πα θ= = = =  

The results in Figures 30 and 31 show the solution of the differential game where 

0 0 60.5,  2,  0.5,  and .ET r πα θ= = = =  The initial co-states which most closely satisfy the 

terminal constraints are (0) 15.3439,  (0) 1.8354,  and (0) 0.0628
E Or r θλ λ λ= − = = −

( ) 0.0,  ( ) 0.0141 and ( ) 0.0209.
E Or rT T Tθ

. The 

resulting terminal co-states are λ λ λ= − = − =  

These results were much unexpected. The scenario represents a special case 

where the Relay moves at the same speed as M (α = 2). Therefore, these results are 

possibly due to unforeseen physics present in the system. The results may also be due to 

an improper value for the planning horizon, T. The terminal co-states are very near zero 

but the second-order sufficiency conditions are not satisfied, since λθ starts out negative 

and ends positive. Therefore, it may be possible that this result gives the opposite goal of 

optimization, namely, the Relay ends up trying to maximize the cost while the Rover tries 

to minimize the cost. This may also be simply due to the fact that a sixth order, nonlinear 

 38



TPBVP is very complex and non-intuitive. Regardless of these conjectures, no observed 

initial values for λθ have provided results which differ from those seen here. This 

provides more incentive for further research of the system and the nonlinear TPBVP 

given by Equation (10). 
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Figure 30: Full System Time History for 

0 0 60.5,  2,  0.5,  and ET r πα θ= = = =  
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Figure 31: Comparative Spatial Results for 

0 0 60.5,  2,  0.5,  and ET r πα θ= = = =  

5.2 Test Results 
The concept demonstration for the sensor data relay was performed at Camp 

Atterbury Army National Guard Base in Indiana on November 9, 2007. During the first 

test, the rebroadcast signal from the relay had some static but showed the same picture as 

the original signal being broadcast from the aircraft. This static can be avoided in future 

applications by using a higher quality receiver for the relay (e.g., a diversity receiver). 

The test was repeated with the receiver and transmitter of the relay only four feet apart. 

This change in configuration gave the same results as the first test. Therefore, if the Relay 

has at least four feet of usable space in the fuselage of the aircraft, interference should not 

be a main cause of concern. 

The practical Implementation of the Relay guidance has been proven using a 

Hardware-in-the-Loop simulation with the Fleeting Target Controller developed by 

Sakryd and Ericson in conjunction with this study. 
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6 Conclusions and Recommendations 

6.1 Conclusions 
This thesis developed optimal guidance laws for a Relay MAV in support of ISR 

beyond LOS. The guidance laws are based upon the solution of a min-max optimization 

problem, namely, the solution of the differential game, which represents a worst case 

scenario. The solution of the differential game hinges on the solution of a nonlinear 

TPBVP. 

Suboptimal Relay (and Rover) guidance strategies are first provided. The first of 

these suboptimal guidance strategies is derived using a geometry-based (sub)optimality 

principle. The Relay heads toward the instantaneous midpoint of the straight line between 

the Rover and the Base. The Rover, heads away from the Relay on a course parallel to 

that of the Relay. The second suboptimal guidance strategy is a one-sided Relay optimal 

control problem, where the Rover is considered stationary. The results using the Matlab 

optimization program GPOCS showed that the optimal guidance of the Relay is to fly 

directly toward the instantaneous midpoint of the straight line between the Rover and the 

Base. 

The heuristic methods provided corroborating results which were then used as 

first guesses for a combination of two shooting methods in series to solve the TPBVP. 

The shooting method results yielded the approximate numerical solution of the Relay-

Rover differential game. 

The practical Implementation of the Relay guidance consists of a Matlab program 

which calculates the Relay position which requires the lowest RF power (i.e., the 

midpoint between the Rover and the Base) at a particular time and then provides this 
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position to the Virtual Cockpit program as a loitering waypoint. The program relies on 

the Kestrel autopilot to fly toward the waypoint and loiter there until it receives a new 

loitering waypoint. This program has been proven using a Hardware-in-the-Loop 

simulation with the Fleeting Target Controller. The hardware configuration required to 

relay sensor data consisted of a ground-based receiver/transmitter set which received the 

data and fed it directly to the transmitter, which transmit it on a different channel. This 

configuration was tested and proved that the concept is feasible for future use on an 

aircraft. 

6.2 Recommendations 
The following recommendations would help provide more robust and realistic 

guidance laws for the system. 

• Analyze the relationship between the initial states and initial co-states to find a 
more routine method to find a solution to the TPBVP. 

• Use a different method (i.e., different from the “shooting method”) to analyze 
the complete system. 

• Perform another one-sided optimization from the Rover’s point of view (i.e., 
trying to maximize the cost while the Relay is stationary. 

• Use a more realistic system model, which considers wind effects and aircraft 
attitude. 

• Incorporate more realistic constraints on the differential equations of motion 
(e.g., maximum turn rate, stall speed, etc.). 

• Consider the signal strength or signal-to-noise ratio as a driving factor for 
finding the optimal relay location and guidance laws. 

• Analyze the effect of the speed ratio α and determine if there is an optimal 
value for both arriving at the optimal location and matching its movements. 
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Appendix A – Geometry 
An Elementary Euclidean Geometry Result: 

It is well known that the locus of all points such that the sum of the distances from 

two fixed points is constant, is an ellipse. Thus, the following is of some interest. 

Theorem 1 The Locus of all points such that the sum of the squares of the 

distances from two fixed points is constant, is a circle centered at the midpoint of the 

segment formed by the two fixed points. The radius of this circle is 

2 2R d f= −  

where the sum of the squares of the distances is 2d2 and the distance between the fixed 

points is 2f; obviously, . d f≥

Proof: 

Let the fixed points F1 and F2 be on the x-axis (F1 = (f, 0), F2 = (-f, 0)) as shown 

in the figure below. 

(x, y) 

F2 F1 f f 

y 

x 

 
Figure 32: Schematic of Fixed Points Showing Isocost Circle 

The sum of the squares of the distances is calculated as 
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2 2 2 2

2 2 2 2

2 2 2 2

2 ( ) ( )
2 2 2

  
2

d f x y f x
f x y

x y d f
d

2y= + + + − +

= + +

⇒ + = −

 

This is the equation of a circle centered at the origin, whose radius is 

2 2R d f= −  
  ⁪ 

This result appeared in Gutenmacher and Vasilyev (2004). 

Remark: The loci of constant costs, 2d2, are concentric circles where the 

minimum cost is found at the midpoint of the line formed by F1 and F2, where d = f. 

Extension: The Locus of all points such that the weighted sum of the squares of 

the distances from two fixed points is constant, is a circle centered on the segment formed 

by the two fixed points and is at a distance of (1 – 2α)f from this segment’s midpoint. 

The radius of this circle is 

2 24 (1 )R d fα α= − −  

where d2 is the specified weighted sum of the squares of the distances, the 

distance between the fixed points is 2f; and the weight is α; if α < 0 or α > 1 this is true 

, and if 0d∀ > 0 1α≤ ≤ , 2 (1d f )α α> − . Note: When the weight α = ½, need d f . >

Proof: The weighted sum of the squares of the distances is calculated as 

[ ]

2 2 2 2 2

2 2 2 2 2

2 2 2

2 2 2 2 2

( ) (1 ) ( )

2 (1 ) (1 ) 2(1 ) (1 )
2 (1 2 )

(1 2 ) (1 2 )

d f x y f x y
2f x fx y f x fx

f x y fx

x f f y f

α α

α α α α α α α α

α

α α

⎡ ⎤ ⎡ ⎤= + + + − − +⎣ ⎦ ⎣ ⎦
= + + + + − + − − − + −

= + + − −

= − − + + − −

y
 

[ ]2 2 2 2(1 2 ) 4 (1 )x f y d fα α α⇒ − − + = − −  
  ⁪ 
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Appendix B – Static Optimization Approach 
Observing the system statically can provide insight on the differential game by 

providing the optimal placement of the MAVs if their motion were momentarily frozen. 

This approach will provide the optimal placement of the Relay relative to the Rover 

location. The goal is to minimize the cost functional given in Equation (1) below, which 

is the integrand of the original differential game. Therefore, the static optimization 

problem is 

 

2 2

,

1

2

3

min ( , ) 2 2 cos

. .
( , ) 0
( , ) 0
( , ) 0

E
E E O E Or

E E

E

E

r r r r r

s t
g r r
g r
g r

θ
θ θ

θ
θ π θ
θ θ π

= + −

= − ≤
= − − ≤
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=

≤

y ⎫
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⎬
⎪
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 (1) 

Transforming the problem into a Lagrange form gives 

  (2) 2 2 2 2 2
1 1 2 2 3( , , , ) 2 2 cos ( ) ( ) ( )E E O E O EL r s r r r r r s s sθ λ θ υ υ π θ υ θ π= + − + − + + − − + + − + 3

The first-order KKT necessary conditions for optimality (Karush, 1939; Kuhn and 

Tucker, 1951) for this function are 
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 (3) 

The set of equations given in (3) can be solved because there are eight unknowns 

in eight equations. However, the problem will first be solved without constraints to 

determine if the enforcement of said constraints is necessary. The first two equations in 
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(3) are solved using fsolve in Matlab with the Lagrange multipliers set to zero (υi = 0). 

Matlab provides the following output: 

[ rEopt, thetaopt, cost] 
[ 1/2*rO, 0, 1/2*rO^2] 
[ 0, -pi/2, rO^2] 
[ 0, pi/2, rO^2] 

Each row of the output represents a stationary point of the system which could 

provide a maximum or minimum cost. None of these stationary points violate the given 

constraints so solving the full set of eight equations is unnecessary. The first of the three 

stationary points is the minimum (as shown by the cost given in the last column). 

Therefore, given the Rover’s position, the midpoint between the Rover and the Base is 

the optimal location of the Relay to minimize the integrand for the differential game. This 

result corroborates with the work done by Goldenberg et al. (2004). 
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Appendix C – Practical Relay Guidance Code 
Commrelay Program 
function [wpx, wpy]=commrelay(uavx,uavy) 
% Communication Relay MAV Positioning 
% This function returns the x & y coordinates of the optimal location for a 
% Relay MAV given the x&y coordinates (relative to the Base) of the Rover 
% MAVs flying the ISR mission. The x&y coordinates returned are best input 
% as a waypoint for the autopilot to fly toward/loiter around. 
% 
% by John Hansen, 05 November 2007 
% modified: 10 Dec 07, JH: added robustness for inputs 
  
if nargin==2 
    [r,c]=size(uavx); 
    if r<c 
        uavx=uavx'; 
        uavy=uavy'; 
    end 
    P=[uavx, uavy] 
elseif nargin==0 
    disp('WARNING: No inputs received! Proceeding using arbitrary 

location'); 
    disp('for two MAVs.'); 
    P=[20 40;-20 40] 
else 
    disp('Incorrect number of inputs. Need two inputs: '); 
    disp('1: x-values of MAV(s)'); 
    disp('2: y-values of MAV(s)'); 
end 
%% Initial Guess 
x0=[mean(P(:,1)/2)+1;mean(P(:,2)/2)-1]; 
%% Optimization 
options = optimset('display','iter','GradObj','off','GradConstr','off', ... 
                     'DerivativeCheck','off','TolCon', 1e-8, 'TolX', 1e-8); 
[x,mincost,ExitFlag,Output]=fminunc(@objective,x0,options,P); 
Output 
wpx=x(1) 
wpy=x(2) 
return 
  
%% the cost function%%%%%%%%%%%%% 
function [cost]=objective(x,P) 
n=length(P(:,1)); 
f0=n*x(1)^2+n*x(2)^2; 
for j=1:n 
    f(j)=(x(1)-P(j,1))^2+(x(2)-P(j,2))^2; 
end 
cost=f0+sum(f); 
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for the optimal path for the Relay. Both suboptimal approaches showed that the optimal path for the Relay is to head straight 
toward the midpoint between the Rover and the Base. 
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